
PHYSICAL REVIEW A 106, 013111 (2022)

Numerical calculations of multiphoton molecular absorption
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Motivated by the possibility of multiphoton-driven pump-probe experiments, such as time-resolved photoelec-
tron spectroscopy, we carry out essential states’s calculations of strong-field molecular excitation by solving the
time-dependent Schrödinger equation for a molecule in a high-intensity laser field. Usually such calculations rely
on adiabatic elimination, but here we make direct use of a large number of energies and transition dipole moments
obtained from electronic structure calculations. In this way, we capture a range of multiphoton absorption orders,
from 2 to 5, and include dynamic Stark shifts naturally. We consider a range of laser frequencies and intensities
to characterize several multiphoton resonances and dynamic Stark shifts. The calculations also include averaging
over molecular orientation and geometry, but are carried out for frozen nuclei, which is relevant in the limit of
very short laser pulses (<10 fs). Here we focus on the molecule thiophene; however, these calculations can easily
be implemented for other molecules with appropriate electronic structure input.

DOI: 10.1103/PhysRevA.106.013111

I. INTRODUCTION

While linear (“single photon”) absorption spectroscopy,
described in terms of first-order perturbation theory, has
proven to be enormously successful in characterizing and
identifying different molecules [1], multiphoton absorp-
tion offers a number of unique possibilities that yield
information not available via single-photon absorption mea-
surements [2–4]. These include a wide range of experiments
from pump-probe measurements that make use of two linear
absorption processes (overall second order in the applied elec-
tric field strength) to follow dynamics on an excited state of
the molecule [5,6], to resonance-enhanced multiphoton pho-
toionization (REMPI), which provides information on highly
excited states [7], all the way to two photon microscopy exper-
iments that allow for more localized probing of samples than
linear absorption would provide [8]. While approaches such
as adiabatic elimination allow for a clear analytical framework
for describing multiphoton absorption or decay in terms of a
few essential states [9–14], it is a nontrivial task to carry out
calculations of the coupling strengths and Stark shifts because
the calculations above second order involve nested sums over
a large number of states. Furthermore, adiabatic elimination
breaks down for very short pulses where the bandwidth of
the laser includes frequencies that drive resonant coupling
between many states [15]. Finally, a conceptual difference
between using adiabatic elimination and solving the time-
dependent Schrödinger equation (TDSE) for the full system
is that in our present case we consider all the photon orders
at the same time and do not just provide a formula for, e.g.,
the third or fourth and so on order absorption. In the case of

adiabatic elimination one should know a priori which states
one can ignore, and for this one should know which order of
absorption one “has to” compute, i.e., which one will be the
relevant one for a given measurement.

A simpler approach than adiabatic elimination is com-
monly used to calculate linear absorption spectra and is
implemented in many quantum chemistry packages [16–19]
in the form of oscillator strengths. Here, a first approxima-
tion to the linear absorption spectrum is computed as a stick
spectrum which consists of an excited state’s energies and
corresponding oscillator strengths at the ground-state equi-
librium geometry. Such a stick spectrum then needs to be
convoluted, e.g., with Gaussians of a manually adapted width
to match the experimental line broadening. Using more than
one geometry in such a calculation is termed the nuclear en-
semble approach and can substantially improve the prediction
quality of linear absorption spectra [20–22]. In these ap-
proaches, the nuclei are kept fixed and a delta-pulse excitation
is assumed. Multiphoton excitation is not described in these
approaches.

Here, we go beyond the calculation of oscillator strengths
and instead solve the TDSE with a short, explicit laser in-
teraction included to describe multiphoton absorption. In a
precursor step, we make use of electronic structure calcula-
tions to determine the energies and dipole couplings of the
first ∼30 states of a molecule (the “essential states” necessary
to capture the strong field-driven population dynamics). This
information enters the TDSE calculations. Here, we choose to
keep the nuclei frozen to keep the computations tractable, but
still go beyond the linear absorption regime. This treatment
of the light-matter coupling is well suited for very short pulse
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FIG. 1. Solving the TDSE for thiophene (molecular cartoon in top left) including light-matter coupling. The electronic states presented
in the bottom left panel are calculated ab initio from the electronic structure at the Franck-Condon geometry. Multiphoton arrows are shown
in black to indicate the multiphoton transitions occurring: three-photon excitation to state 1 (green), four-photon to state 8 (orange), and
five-photon to state 13 (red). A 10-fs laser pulse with an intensity of 15 TW/cm2 at a central wavelength of 650 nm is shown in the top right
panel. The bottom panel shows the state populations on a log scale as a function of time. The states with significant population transfer are
shown. We show the full Hamiltonian H , where DN = EN + μNNε.

durations (<10 fs), during which nuclear motion is minimal,
and for which there are laser couplings between many pairs
of states such that the number of essential states is significant
(i.e., �3).

We consider rotational averaging to provide results that are
relevant to experiments that do not work with a well-aligned
molecular sample. We also consider a Wigner distribution of
molecular geometries about the equilibrium geometry of the
electronic ground state of the neutral molecule [for simplicity
referred to here as the Franck-Condon (FC) geometry] to
account for the spread of the initial N-dimensional vibrational
wave function. Furthermore, by sampling different geometries
within the Wigner distribution, we capture some coupling
between different electronic states (e.g., intensity borrowing).

While essential states calculations were carried out be-
fore, in this work we aim to set the stage for time-resolved
experiments that can probe nonadiabatic excited state dy-
namics. The idea is that a single broadband (∼5 fs) laser
pulse can be shaped to generate a pump-probe pulse pair,
with the “pump” pulse launching an excited state wave
packet and the “probe” pulse ionizing the molecule in a
multiphoton-pump multiphoton-probe time-resolved photo-
electron spectroscopy (TRPES) experiment [23,24]. Two
major advantages of this multiphoton-pump approach are that
one can potentially study optically dark states that are not
accessible with single-photon absorption and one can use the
high time resolution available from near-IR and optical pulses
to probe nonadiabatic dynamics in multiple excited states in
parallel [23,25].

Our calculations are carried out for thiophene [26], which
is an aromatic five-membered ring and plays an impor-
tant role in organic chemistry. Thiophene and its derivatives
are building blocks of very promising organic materials

for technological applications [27], such as organic solar
cells [28,29], light-emitting diodes [30], and field-effect tran-
sistors [31]. Consequently, the excited states of thiophene
and their photophysics are of considerable interest, see
Refs. [32–36].

The computations, performed here for thiophene, utilize
the electronic Hamiltonian within the fixed nuclei approxi-
mation. The electronic structure calculations account for the
multielectron nature of the wave function, and since nuclear
dynamics are not considered, this leaves only the energies
and couplings between states for the light-matter interaction.
Therefore, the computations can easily be extended to almost
any other molecule of similar size and structure.

Figure 1 shows a cartoon diagram of thiophene and il-
lustrates the basic ideas behind the calculations, which are
described in detail below. In short, we make use of electronic
structure calculations to determine the energies (E ) of the
first 30 electronic states of thiophene (illustrated in the left
panel) and the transition dipole moments (μ) between them
at the FC geometry (i.e., minimum on the ground electronic
state S0). Along with the applied laser pulse (ε), shown in
the top right panel, these form the Hamiltonian written in
the bottom right panel. We make use of this Hamiltonian to
solve the TDSE with nuclear degrees of freedom frozen. Ne-
glecting nuclear dynamics during the pulse can be reasonable
if the pulse duration is shorter than the fastest vibrational
period [37], although there are some subtleties associated
with this for very strong fields where the nuclear coordinate
dependence of the coupling between electronic states cannot
be ignored [38]. The output of the calculations are the time-
dependent populations for each state, shown in the bottom
right panel, using a color coding established in the bottom left
panel.
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II. CALCULATIONS

A. Quantum chemistry

We start with the electronic structure calculations, which
were performed with the multistate complete active space
perturbation theory second-order (MS-CASPT2) method [39]
based on multiconfigurational state-averaged complete active
space self-consisted field (SA-CASSCF) reference wave func-
tions. The MS-CASPT2 method was chosen because of its
reliability and the possibility of a straightforward system-
atic improvement of the level of theory. MS-CASPT2 was
already successfully used to describe the electronic excited
states of thiophene by several groups [35,40,41]. In most
of the present computations, the active space included 10
electrons distributed on 11 orbitals and the averaging was
performed over 30 electronic states, but in some cases compu-
tations were performed with 13 active orbitals or with fewer
states to test the role of the active space size and that of
the number of states. In each case, state averaging was per-
formed. The shapes of the active orbitals at the FC position
are given in the Appendix for the case of 11 orbitals and 30
states.

As an electronic basis, the atomic natural orbital-
relativistic correlation consistent (ANO-RCC) basis
set [42,43] was used with the following contractions:
5s4p2d1 f for S, 4s3p2d1 f for C, and 3s2p1d for H
atoms. This basis set, together with the above active
space, is appropriate to describe the majority of the valence
excited states and reproduces the measured linear absorption
spectrum very well (see Fig. 12). The description of all the
valence and Rydberg states that may contribute to multiphoton
processes would requiree either a much larger active space
space, resulting in enormous computational cost, or separate
computations with different properly designed smaller, active
spaces. Although the latter approach was successfully applied
for thiophene in Ref. [40] for the totally symmetric FC
geometry, this approach could not be followed in the present
study in which MS-CASPT2 computations were performed
for many asymmetric geometries.

As spin-orbit coupling is small for this system and the
pulse durations are short compared to nuclear dynamics, we
restricted our investigations to electron dynamics excluding
both nonadiabatic effects and intersystem crossings. Accord-
ingly, only singlet states were included in the computations.

We used OPEN-MOLCAS 20.10 [19] and employed the
second-order Douglas-Kroll-Hess (DKH) Hamiltonian [44]
with the standard (0.25 hartree) ionization potential electron
affinity shift and an additional 0.3 hartree imaginary level
shift. The transition dipole moment matrix was determined ac-
cording to the restricted active space state interaction (RASSI)
formalism [45].

The FC geometry and normal vibrational modes in the
ground electronic state were obtained by density functional
theory using the Becke, 3-parameter, Lee-Yang-Parr (B3LYP)
functional [46,47] and aug-cc-pVTZ basis set [48]. For this
the GAUSSIAN’09 package of programs was used [49]. Wigner
sampling of initial geometries were then based on normal
mode analysis and 200 different geometries were selected
randomly according to the Wigner distribution using the
WIGNER.PY routine of the SHARC 2.1 program package [50].

The set of energies and (transition) dipole moments obtained
in this way were then employed in the subsequent quantum
dynamics simulations.

B. Quantum dynamics

To study the strong-field light-matter interaction, we solve
the TDSE

ih̄
∂�(t, r, R)

∂t
= [H0(r, R) + �μ(r, R) · �ε(t )]�(t, r, R), (1)

in MATLAB using the ODE45 differential equation solver,
which relies on an explicit Runge-Kutta (4,5) formula. The
Hamiltonian, H = H0(r, R) + �μ(r, R) · �ε(t ), shown in Fig. 1,
is composed of state energies E via the field-free Hamiltonian
H0, transition dipole moments μ, and electric field ε, where
we employ the length gauge for the light-matter interaction.
Both the state energies and transition dipole moments are
calculated from electronic structure calculations. The strength
of the electric field �ε(t ) is described by a Gaussian envelope
times a cosine wave

�ε(t ) = �ε0e−4 ln(2)t2/2τ 2
cos(ωt ), (2)

where ε0 is the field amplitude, ω is the laser frequency, and τ

is the intensity full width at half maximum (FWHM). We use
a pulse duration of τ = 10 fs, with an eye towards measure-
ments that can resolve the fastest vibrational dynamics.

The wave function � is a function of the electronic and
nuclear coordinates r and R, respectively, and we define it as

�(t, r, R) =
∑

i

ai(t ) |ψi(r, R)〉 . (3)

For our calculations, we work with fixed nuclear position
R0, and thus ψi(r, R0) is the ith electronic eigenfunction at
fixed nuclear position, R = R0, and the absolute square of the
complex time-dependent coefficient ai(t ) is the population of
this state at time t , the asymptotic values of which are the
central quantities of the present investigations. The elements
of the transition dipole moment matrix are given by �μi j (R) =
〈ψi(r, R)| �μ(r, R) |ψ j (r, R)〉.

With the electronic structure calculations in hand and op-
erating in the frozen nuclei regime, our goal is to solve Eq. (1)
for the time-dependent coefficients ai(t ):

ih̄ȧi(t ) =
∑

i

ai(t ) 〈ψ j (r, R)| H |ψi(r, R)〉 . (4)

III. RESULTS AND DISCUSSION

Figure 1 shows the results of a single calculation. Below
the cartoon of the molecule in the top left corner is a diagram
of the state energies for the first 30 states below the ionization
potential Ip = 8.9 eV. Five black arrows show multiphoton
resonances for a laser pulse with a central wavelength of
650 nm. The top right panel shows the electric field as a func-
tion of time for a laser pulse with an intensity of 15 TW/cm2

and a pulse duration of 10 fs. In the bottom right panel are the
state populations as a function of time (|a(t )|2) from solving
the TDSE, shown on a log scale for all the states given in the
energy diagram. Most states do not come into resonance, so
their populations are approximately zero; however, there are
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FIG. 2. Multiphoton spectrum: Final-state populations from
solving the TDSE for various laser frequencies (photon energies),
plotted as a function of state energy and photon energy for a 10-fs
pulse with an intensity of 15 TW/cm2. Multiphoton orders are rep-
resented by the diagonal lines: one-photon in magenta; two-photons
in cyan; three-photons in green; four-photons in orange; and five-
photons in red. Solid lines correspond to E = nhν and dashed lines
correspond to E = nhν − Up. These calculations were carried out
for the FC geometry with the laser polarization aligned along the x
direction of the molecule (as defined by the central cartoon of Fig. 3).

three states that populate during the pulse. These are depicted
in green, orange, and red. These population curves are color
coded to match the states on the left. The green curve corre-
sponds to the state at 5.6 eV, which comes into three-photon
resonance, the orange curve corresponds to a state which
comes into four-photon resonance around 7.4 eV, and the red
curve represents a five-photon off-resonant intermediate state
at 8.6 eV, which is why there is no population remaining in
the state after the pulse turns off. This specific wavelength
in Fig. 1 was chosen to illustrate the nature of the calcula-
tions and highlight the fact that there are some multiphoton
resonances leaving the population in the state at the end of
the pulse, some of-resonant states that are only populated
during the pulse, and rapid oscillations that one neglects if
one performs adiabatic elimination. Solving the TDSE exactly
inherently includes multiphoton couplings between the states.

The calculation shown in Fig. 1 is carried out for a single-
photon energy (wavelength). We can extend these results by
scanning over a large range of photon energies as represented
in Fig. 2. Here we present a “multiphoton spectrum” which
shows the final state populations as a function of state and
photon energies. Once again we used a 10-fs pulse with an
intensity of 15 TW/cm2. As in Fig. 1, we see population
transfer as a result of several multiphoton resonances. Figure 2
serves as a starting point, from which we buildup the physics
of this work.

The multiphoton orders are depicted by the diagonal lines:
one photon in magenta, two photon in cyan, three photon in
green, four photon in orange, and five photon in red. For each
photon order, we show two lines: a solid line corresponding
to the unshifted energy (E = nhν) and a dashed line corre-

FIG. 3. Multiphoton spectra for different laser-molecule projec-
tions in the FC geometry with a 15 TW/cm2, 10-fs pulse. Top left:
x projection; top right: y projection; and bottom left: z projection.
Bottom right: Populations averaged for polarizations projected over
the full sphere. The dashed box highlights that rotationally averaging
is necessary in some cases and goes beyond the sum of the three
projections.

sponding to the ponderomotive shifted energy (E = nhν − Up

where Up = e2ε2

4mω2 , with e and m being the charge and mass of
the electron). We note that Fig. 2 uses a logarithmic scale to
show populations over a large range of values.

A. Rotational averaging

The transition dipole moment μ is a vector quantity, as is
the laser field. For a randomly oriented molecular ensemble,
one needs to average over different projections of the laser
polarization onto the molecular axes, and thus the transition
dipole moment for each pair of states is �μi j · �ε(t ). For sim-
plicity we only considered molecules oriented such that the
laser polarization lay along the x axis for the calculations
shown in Fig. 2; however, this ignored couplings due to other
laser-molecule projections. In Fig. 3 we start to account for
this issue by calculating the x projection (reproduction of
Fig. 2) in the top left corner, the y projection in the top right
corner, and the z projection in the bottom left corner. A quick
comparison of these three panels highlights the fact that the
projections have a strong bearing on which states are excited.
One can note that for the x projection the same states are
populated for the first four photon orders represented. This
is not the case for the y projection, which shows that one-
and three-photon excitation populates the same states, but
two-photon excitation populates entirely different states.

As the aim of these calculations is to aid and inform
experimental measurements where the molecules are often
randomly oriented, we had to account for the various pos-
sible molecule-laser projections. To do this we describe the
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FIG. 4. Rotationally averaged multiphoton spectra for different
laser intensities in the FC geometry. Top left: I = 0.1 TW/cm2. Top
right: I = 1 TW/cm2. Bottom left: I = 10 TW/cm2. Bottom right:
I = 30 TW/cm2.

coupling term, �μ · �ε by

�μ · �ε = μxε0 sin θ cos φ + μyε0 sin θ sin φ + μzε0 cos θ,

(5)
where θ and φ are the polar and azimuthal angles, respec-
tively, on the unit sphere depicted in the central cartoon of
Fig. 3. We averaged the populations from calculations for a
distribution of angles encompassing the sphere to create a
rotationally averaged multiphoton spectrum as shown in the
bottom right panel of Fig. 3. The states present in the previous
three panels for the pure projections are represented in the
averaged one, but it is clear that many more states are active
here as well.

This approach is necessary because a simple linear com-
bination of the pure projections (x, y, z) lacks multiphoton
coupling through the different projections. This is described
mathematically by Eqs. (6) and (7), which will be discussed in
detail later, but a simple explanation can be found by compar-
ing the one- and two-photon excitations. For the one-photon
case, a linear combination of the three pure projections works
because one-photon excitation can only couple states through
one of the three projections, i.e., excited state C can only be
reached if the x, y, or z projection between the ground state A
and excited state C is nonzero. However, a two-photon reso-
nance allows coupling between A and C via an intermediate
state B even if all three pure projections between A and C
are zero. For example, states A and B are one-photon coupled
through only the x projection followed by states B and C being
one-photon coupled through only the y projection. In this case,
just looking at the three pure projections would yield popula-
tion in state B but never in state C. As the multiphoton order
increases, so does the possibility for these types of couplings
such that a linear combination of the three pure projections

FIG. 5. Multiphoton absorption spectra (lineouts) for different
laser intensities. The three panels show the two (top panel), three
(middle panel), and four (bottom panel) photon absorption as a
function of photon energy for three different laser intensities (I =
1 TW/cm2, I = 15 TW/cm2, I = 30 TW/cm2), illustrating the ef-
fect of dynamic Stark shifts.

fails for higher-order photon resonances, as is clear from
the two- and three-photon orders in the rotationally averaged
panel. An example is marked by the dashed white box in Fig. 3
in the region of two-photon absorption. For the three pure
projections, there is no two-photon resonance; however, when
rotationally averaging we see that there are several two-photon
resonances. This effect exists for all multiphoton orders.

B. Stark shifting

Next we consider the intensity dependence of these mul-
tiphoton spectra. Figure 4 highlights these results. The top
left panel shows the calculations for a laser intensity of
0.1 TW/cm2, with single-photon transitions dominating the
spectrum. As the intensity is increased to 1 TW/cm2 (top right
panel), 10 TW/cm2 (bottom left panel), and 30 TW/cm2 (bot-
tom right panel) we see higher multiphoton orders appearing.
By comparing the first order at 0.1 and 30 TW/cm2, we can
see a spreading of the state populations in photon energy.
This spreading comes from the inherent Stark shifting of the
states [51].

We can be more quantitative about the Stark shifts by
taking multiphoton lineouts for various intensities. Figure 5
shows the two-, three-, and four-photon absorption spectra
(lineouts) for three different laser intensities, illustrating how
dynamic Stark shifts affect the absorption spectrum. Both
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FIG. 6. Comparison of different number of states. The four pan-
els show the multiphoton lineouts for photon orders: two (top left),
three (top right), four (bottom left), and five (bottom right). Bottom
x axis shows the photon energy and the top x axis shows the state
energy. The colored lines correspond to the colors used in Fig. 2 and
indicate the 11o30s model used throughout the paper.

positive and negative Stark shifts can be observed, with most
peaks displaying positive Stark shifts, as one expects in the
ponderomotive limit. However, we also observe a negative
Stark shift for the highest peak in the three-photon absorption
spectrum. Also, we note that the Stark shifts can lead to
variations in relative peak heights, as different intermediate
states shift closer into resonance, enhancing the absorption of
N photons.

C. Model comparison

Another feature of the multiphoton calculations is that they
offer a test of the robustness of the electronic structure calcu-
lations beyond what one can gather from the linear absorption
spectrum. When running electronic structure calculations with
multiconfigurational wave functions, one has to choose the
number of states, and the size of the active space. Enlarging
an active space (without exchanging orbitals) usually provides
more precision, but comes at the cost of computation time, so
one often has to sacrifice precision for realistic computation
times. Increasing the number of considered states increases
the accuracy of the multiphoton calculation, i.e., the outcome
of the TDSE computation, while a slight decrease in the qual-
ity of the state energies in the electronic structure calculations
due to a state average over more states is usually negligible in
comparison.

We first consider the number of electronic states that are
included. In Fig. 6 we show the second- through fifth-order
multiphoton lineouts for models including 15, 20, and 30
electronic states. All three models show the the same peaks

FIG. 7. Comparison of different levels of theory. The five panels
show the multiphoton lineouts for photon orders one to five from top
to bottom. Bottom x axis shows the photon energy and the top axis
shows the state energy. The colored lines correspond to the colors
used in Fig. 2 and indicate the 11o30s model used throughout the
paper.

in the multiphoton absorption spectra for state energies below
7 eV. Above this value we see that the 15 state model differs
significantly from the 20 and 30 state models. For instance,
the 15 state model completely misses the 1.9 eV resonance
at fourth order. The 20 state and 30 state models are quite
comparable for all four orders suggesting that the 30 state
model captures the “essential states” and we do not need an
infinite number of states to model the dynamics for the laser
pulses considered here.

Another key aspect of these types of electronic structure
calculations is the number of orbitals over which the electrons
are distributed. In Fig. 7 we compare the multiphoton ab-
sorption spectra for two models containing 11 and 13 orbitals
for the same number of electronic states (30). The top panel
shows the single-photon absorption spectrum, where there is
good agreement between the two models. But even at the
next photon order we start to see significant discrepancies
between the two models. One would expect that increasing
the number of orbitals should increase the precision, but
this would require a subsequent increase in the number of
electronic states, which becomes computationally restrictive.
Earlier efforts by Roos et al. [40] were able to get around
this issue by keeping the desired orbitals separate and ran two
independent large active space calculations which they com-
bined later on. This is an excellent approach for them as they
wished to calculate the single-photon absorption spectrum,
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FIG. 8. Rotationally averaged multiphoton spectra for different
molecular geometries. Top left: Franck-Condon geometry. Top right:
A structure randomly chosen from the Wigner distribution of geome-
tries around the Franck-Condon geometry. Bottom left: Average over
200 Wigner-distributed geometries. Bottom right: Same as bottom
left, different view. Note that the color axis uses a linear scale
to emphasize the differences in Wigner-averaged spectrum, which
means that to allow the multiphoton orders to be visible we scaled
the population in the first order by 10 and each order subsequent
order, n, by 10n−1.

but it poses a similar problem for us as the one we faced with
rotationally averaging. Since the two computations are split
they did not provide the transition dipole moments between
all of the calculated states, which means that we would be
missing out on several multiphoton transitions. In addition,
splitting the quantum chemical calculations, as was done in
Ref. [40], is based on splitting the active spaces themselves,
which relies on molecular symmetry and a careful selection of
orbitals in the different active spaces. This is prohibited when
the calculations are to be performed for multiple, possibly
for a large number of, nonsymmetric geometries beyond the
FC. This, however, is necessary for computing multiphoton
spectra, as discussed below.

D. Wigner distribution

The electronic structure calculations provide us with the
state energies and transition dipole moments assuming a fixed
molecular geometry. Up to this point, we only dealt with
the FC geometry. In the top left panel of Fig. 8 we show
the rotationally averaged multiphoton spectrum for the FC
geometry as discussed previously in Fig. 3. We repeat the
multiphoton calculation for a different randomly distorted
geometry (DG) of the molecule under the same conditions as
the FC geometry presented in the top right panel of Fig. 8.
There are clear differences between these two multiphoton
spectra, not simply in what states are excited, but also in the
extent to which each state is excited. To investigate why the

FIG. 9. One- versus two-photon absorption. This figure illus-
trates the ability to populate one-photon dark states via multiphoton
absorption. Note the two-photon absorption peak at about 6.3 eV,
which is absent in the single-photon absorption spectrum.

DG spectra shows excitation to many more states, we ran the
multiphoton calculation again swapping the transition dipole
moments for the two geometries. By making this swap we
were able to determine that the increase in excitations are
due to the transition dipole moments. The nonidealized (not
FC) geometry breaks the molecular symmetry leading to more
nonzero transition dipole moment elements thus excitation to
more states.

With this in mind, it becomes necessary to sample molec-
ular geometries to accurately model the system [22], in other
words calculate a Wigner distribution [52]. We did exactly this
for a number of different geometries and summed the popu-
lations across all geometries to produce a Wigner-averaged
multiphoton spectrum. It is necessary to sample a large
number of molecular geometries for the Wigner-averaged
multiphoton spectrum to converge. We find that averaging up
to 200 geometries leads to reasonable qualitative convergence
of the main features of the multiphoton spectrum. While in
the top two panels of Fig. 8 we show the spectrum for the FC
and DG geometries discussed, in the bottom panels we show
the multiphoton spectrum averaged over all 200 geometries
sampled from the Wigner distribution. In these bottom panels
we show the results on a linear scale. To allow the multiphoton
orders to be visible, we scaled the population in the first order
by 10 and each subsequent order, n, by 10n−1. The bottom
left panel shows a top-down view of the Wigner-averaged
spectrum, while the right panel shows a three-dimensional
(3D) version of the same spectrum.

Due to the high intensity required for the higher photon
orders to appear, the one-photon spectrum is saturated in this
figure. However, we are more interested in the higher-photon
orders which show clear peaks. This is more clearly seen in
the 3D view, where the three-photon order has a prominent
peak at around 7 eV, for example. While averaging over many
geometries in the Wigner distribution broadens the features
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FIG. 10. Shapes of active electron orbitals at the Franck-Condon
geometry. Upper row: Orbitals doubly occupied in ground state.
Lower row: Empty orbitals in ground state. The orbitals were all
displayed with the same contour value.

in the multiphoton absorption spectrum, there are still peaks,
and they display Stark comparable to those we discussed for
the FC geometry in Sec. III B, as shown in Fig. 11.

A simple check of our calculations is to compare the cal-
culations for low intensities with the single-photon absorption
spectrum generated by the oscillator strengths, and experi-
mental data. This comparison is shown in Fig. 12, discussed
in the Appendix, and demonstrates excellent agreement. With
this fully rotationally and Wigner-averaged spectrum we can
now look towards new experimental measurements.

E. Applications

The calculations described above can have many appli-
cations, but one avenue in particular that we are exploring
is studying one-photon dark states. In Fig. 9 we show one-
and two-photon absorption spectra using full rotational and
Wigner averaging. Both spectra reproduce the states at 5.5 eV
and 7.2 eV where the two-photon absorption spectra is un-
dergoing a Stark shift due to the 600 times increase in laser
intensity. The most interesting feature is that the two-photon

FIG. 11. Multiphoton absorption spectra (lineouts) for different
laser intensities for Wigner-averaged data. The two panels show
the two (top panel) and three (bottom panel) photon absorption
as a function of photon energy for two different laser intensities
(I = 1 TW/cm2, I = 15 TW/cm2), illustrating the effect of dynamic
Stark shifts.

absorption spectra shows an additional peak at 6.3 eV. This
highlights the ability to populate one-photon dark states via
multiphoton absorption.

The ability to populate one-photon dark states via multi-
photon absorption can be understood by comparing the one-
and two-photon coupling. For single-photon transitions, the
coupling is driven by the transition dipole matrix element

χi, j (t ) ∝ 〈ψi| �μ · �ε(t )|ψ j〉. (6)

For two-photon transitions, the coupling is driven by a sum of
products of transition dipole matrix elements

χi, j (t ) ∝
∑

k

〈ψi| �μ · �ε(t )|ψk〉〈ψk| �μ · �ε(t )|ψ j〉. (7)

Note that this sum of products contains cross terms in the dif-
ferent x, y, and z projections of the laser field on the molecular
transition dipole moment, as noted in the rotational averaging
discussion above (see Sec. III A). There can be situations
where the single-photon coupling vanishes due to symme-
try or wave-function overlap, but the two- or multiphoton
coupling does not because of the involvement of intermedi-
ate off-resonant states, which can serve as a bridge between
nonoverlapping states. In the specific case we consider here,
the single-photon coupling is low due to poor wave-function
overlap.

IV. CONCLUSION

In conclusion, we present calculations of multiphoton
molecular absorption using a combination of ab initio elec-
tronic structure calculations and essential states calculations
of the light-matter interaction for a strong few-cycle laser

FIG. 12. Linear absorption spectrum for thiophene experimen-
tally measured (solid black) reproduced from Holland et al. [53],
calculated from the oscillator strengths from a Wigner-sampled
electronic structure calculation (dashed gray), and calculated from
the solution to the TDSE with Wigner-sampled initial conditions
(solid magenta). For comparison of the populations and the oscillator
strengths, the populations are scaled by the photon energy.
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pulse. The calculations illustrate the ability to excite multi-
ple states of the molecule in less than a vibrational period
through multiphoton absorption, which can populate single-
photon dark states, which are difficult to study otherwise. As a
general approach, which only requires input from straight-
forward electronic structure calculations, we hope that this
may help to guide and interpret many future time-resolved
measurements that require multiphoton excitation or probing.
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APPENDIX

Here we present additional details for the electronic struc-
ture calculations in regards to the Franck-Condon (FC)
geometry. In Table I we outline the coordinates for each atom
of thiophene in the FC geometry, where the molecule is planar
and lays in the xy plane. In Fig. 10 we show the shapes of
active electron orbitals at the FC geometry. The upper row
shows the orbitals, which are doubly occupied in ground state,
while the lower row shows empty orbitals in the ground state.

Here we show the Stark shifting of the peaks in the multi-
photon absorption spectra for Wigner-averaged data. We can
see that the Stark shifting is comparable to the Stark shifts
presented in Fig. 5, which was solely for the FC geometry.

A standard test of electronic structure calculations is to
compare the oscillator strengths as a function of energy
or wavelength with the experimentally measured absorption
spectrum. The oscillator strengths are calculated from the
energies and transition dipole moments generated from the

TABLE I. Franck-Condon geometry of thiophene. The molecule
is planar and lays in the xy plane. Coordinates are given in Å.

Atom x coord. y coord.

S −1.193 0.000
C 0.009 −1.238
C 0.009 1.238
C 1.267 −0.712
C 1.267 0.712
H −0.282 −2.274
H −0.282 2.274
H 2.163 −1.314
H 2.163 1.314

electronic structure calculations. These are the same param-
eters that are used as input into our quantum dynamics
calculations, so one would expect that the linear absorption
spectrum from both calculations should be comparable. To
make this comparison, we solved the TDSE for the full ro-
tationally averaged Wigner distribution at an intensity low
enough to remain in the perturbative limit. Figure 12 shows
the results of this calculation. Here we reproduce the exper-
imentally measured linear absorption spectrum for thiophene
from Holland et al. [53] in black. The absorption spectrum cal-
culated from the oscillator strengths from a Wigner-sampled
electronic structure calculation is shown in dashed gray and
calculated from the solution to the TDSE with Wigner-
sampled initial conditions is shown in solid magenta. For a
direct comparison to the absorption spectrum and the oscil-
lator strengths, the populations from the quantum dynamics
calculations had to be scaled by the photon energy. The ab-
sorption spectrum from the quantum dynamics calculations is
nearly identical to that of the electronic structure calculations
emphasizing that the quantum dynamics calculations behave
as expected. In addition, both spectra also compare quite
well to the experimental absorption spectrum, reproducing the
main two peaks at 5.5 eV and 7 eV.
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